首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13465篇
  免费   1075篇
  国内免费   2篇
  2023年   59篇
  2022年   42篇
  2021年   267篇
  2020年   161篇
  2019年   192篇
  2018年   263篇
  2017年   254篇
  2016年   415篇
  2015年   676篇
  2014年   775篇
  2013年   940篇
  2012年   1266篇
  2011年   1171篇
  2010年   710篇
  2009年   628篇
  2008年   901篇
  2007年   939篇
  2006年   783篇
  2005年   767篇
  2004年   680篇
  2003年   646篇
  2002年   634篇
  2001年   118篇
  2000年   85篇
  1999年   114篇
  1998年   146篇
  1997年   90篇
  1996年   72篇
  1995年   72篇
  1994年   71篇
  1993年   73篇
  1992年   60篇
  1991年   53篇
  1990年   48篇
  1989年   31篇
  1988年   32篇
  1987年   27篇
  1986年   31篇
  1985年   20篇
  1984年   23篇
  1983年   22篇
  1981年   16篇
  1980年   16篇
  1979年   12篇
  1978年   17篇
  1976年   10篇
  1975年   11篇
  1973年   10篇
  1971年   11篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The yeast Yarrowia lipolytica is able to secrete high amounts of several organic acids under conditions of growth limitation and carbon source excess. Here we report the production of citric acid (CA) in a fed-batch cultivation process on sucrose using the recombinant Y. lipolytica strain H222-S4(p67ICL1) T5, harbouring the invertase encoding ScSUC2 gene of Saccharomyces cerevisiae under the inducible XPR2 promoter control and multiple ICL1 copies (10–15). The pH-dependent expression of invertase was low at pH 5.0 and was identified as limiting factor of the CA-production bioprocess. The invertase expression was sufficiently enhanced at pH 6.0–6.8 and resulted in production of 127–140 g l−1 CA with a yield Y CA of 0.75–0.82 g g−1, whereas at pH 5.0, 87 g l −1 with a yield Y CA of 0.51 gg−1 were produced. The CA-productivity Q CA increased from 0.40 g l −1 h−1 at pH 5.0 up to 0.73 g l −1 h−1 at pH 6.8. Accumulation of glucose and fructose at high invertase expression level at pH 6.8 indicated a limitation of CA production by sugar uptake. The strain H222-S4(p67ICL1) T5 also exhibited a gene–dose-dependent high isocitrate lyase expression resulting in strong reduction (<5%) of isocitric acid, a by-product during CA production.  相似文献   
992.
Liver fatty acid-binding protein (L-FABP) is a highly conserved key factor in lipid metabolism. Amino acid replacements in L-FABP might alter its function and thereby affect glucose metabolism in lipid-exposed subjects, as indicated by studies in L-FABP knockout mice. Amino acid replacements in L-FABP were investigated in a cohort of 1,453 Caucasian subjects. Endogenous glucose production (EGP), gluconeogenesis, and glycogenolysis were measured in healthy carriers of the only common Thr(94)-to-Ala amino acid replacement (Ala/Ala(94)) vs. age-, sex-, and BMI-matched wild-type (Thr/Thr(94)) controls at baseline and after 320-min lipid/heparin-somatostatin-insulin-glucagon clamps (n = 18). Whole body glucose disposal was further investigated (subset; n = 13) using euglycemic-hyperinsulinemic clamps without and with lipid/heparin infusion. In the entire cohort, the only common Ala/Ala(94) mutation was significantly associated with reduced body weight, which is in agreement with a previous report. In lipid-exposed, individually matched subjects there was a genotype vs. lipid-treatment interaction for EGP (P = 0.009) driven mainly by reduced glycogenolysis in Ala/Ala(94) carriers (0.46 +/- 0.05 vs. 0.59 +/- 0.05 mgxkg(-1)xmin(-1), P = 0.013). The lipid-induced elevation of plasma glucose levels was smaller in Ala/Ala(94) carriers compared with wild types (P < 0.0001). Whole body glucose disposal was not different between lipid-exposed L-FABP genotypes. In summary, the Ala/Ala(94)-mutation contributed significantly to reduced glycogenolysis and less severe hyperglycemia in lipid-exposed humans and was further associated with reduced body weight in a large cohort. Data clearly show that investigation of L-FABP phenotypes in the basal overnight-fasted state yielded incomplete information, and a challenge test was essential to detect phenotypical differences in glucose metabolism between L-FABP genotypes.  相似文献   
993.
In contrast to healthy conditions, intestinal epithelial cells (IECs) stimulate proinflammatory CD4+ and CD8+ T cells during Crohn's disease (CD). The underlying regulatory mechanisms remain unknown. Here we investigated the epithelial expression of major histocompatibility complex (MHC) I and MHC II and its interference with endocytic pathways, in vivo. During ileoscopy, ovalbumin (OVA) was sprayed onto ileal mucosa of CD patients (ileitis and remission) and controls. The epithelial traffic of OVA and MHC I/II pathways were studied in biopsies using fluorescence and electron microscopy. We found MHC I and MHC II to accumulate within multivesicular late endosomes (MVLE) of IECs. Faint labeling for these molecules was seen in early endosomes and lysosomes. MVLE were entered by OVA 10 min after exposure. Exosomes carrying MHC I, MHC II, and OVA were detected in intercellular spaces of the epithelium. OVA trafficking and labeling patterns for MHC I and MHC II in IECs showed no differences between CD patients and controls. Independent of inflammatory stimuli, MHC I and MHC II pathways intersect MVLE in IECs, which were efficiently targeted by luminal antigens. Similar to MHC II-enriched compartments in professional antigen presenting cells, these MVLE might be critically involved in MHC I- and MHC II-related antigen processing in IECs and the source of epithelial-released exosomes. The access of luminal antigens to MHC I in MVLE might indicate that the presentation of exogenous antigens by IECs must not be restricted to MHC II but might also occur as "cross-presentation" via MHC I to CD8+ T cells.  相似文献   
994.
Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.  相似文献   
995.
996.
We have identified thioredoxins (Trx) of Malassezia sympodialis, a yeast involved in the pathogenesis of atopic eczema, and of Aspergillus fumigatus, a fungus involved in pulmonary complications, as novel IgE-binding proteins. We show that these Trx, including the human enzyme, represent cross-reactive structures recognized by serum IgE from individuals sensitized to M. sympodialis Trx. Moreover, all three proteins were able to elicit immediate-type allergic skin reactions in sensitized individuals, indicating a humoral immune response based on molecular mimicry. To analyze structural elements involved in these reactions, the three-dimensional structure of M. sympodialis Trx (Mala s 13) has been determined at 1.4-A resolution by x-ray diffraction analysis. The structure was solved by molecular replacement and refined to a crystallographic R factor of 14.0% and a free R factor of 16.8% and shows the typical Trx fold. Mala s 13 shares 45% sequence identity with human Trx and superposition of the solved Mala s 13 structure with those of human Trx reveals a high similarity with a root mean square deviation of 1.11 A for all Calpha atoms. In a detailed analysis of the molecular surface in combination with sequence alignment, we identified conserved solvent-exposed amino acids scattered over the surface in both structures which cluster to patches, thus forming putative conformational B cell epitopes potentially involved in IgE-mediated cross- and autoreactivity.  相似文献   
997.
Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describes the regulation and function of DMBT1 in intestinal epithelial cells, which form the primary immunological barrier for invading pathogens. We report that intestinal epithelial cells up-regulate DMBT1 upon proinflammatory stimuli (e.g., TNF-alpha, LPS). We demonstrate that DMBT1 is a target gene for the intracellular pathogen receptor NOD2 via NF-kappaB activation. DMBT1 is strongly up-regulated in the inflamed intestinal mucosa of Crohn's disease patients with wild-type, but not with mutant NOD2. We show that DMBT1 inhibits cytoinvasion of Salmonella enterica and LPS- and muramyl dipeptide-induced NF-kappaB activation and cytokine secretion in vitro. Thus, DMBT1 may play an important role in the first line of mucosal defense conferring immune exclusion of bacterial cell wall components. Dysregulated intestinal DMBT1 expression due to mutations in the NOD2/CARD15 gene may be part of the complex pathophysiology of barrier dysfunction in Crohn's disease.  相似文献   
998.
The anatomy and the physiology of the prosternal chordotonal organ (pCO) within the prothorax of Sarcophaga bullata is analysed. Neuroanatomical studies illustrate that the approximately 35 sensory axons terminate within the median ventral association centre of the different neuromeres of the thoracico-abdominal ganglion. At the single-cell level two classes of receptor cells can be discriminated physiologically and morphologically: receptor cells with dorso-lateral branches in the mesothoracic neuromere are insensitive to frequencies below approximately 1 kHz. Receptor cells without such branches respond most sensitive at lower frequencies. Absolute thresholds vary between 0.2 and 8m/s(2) for different frequencies. The sensory information is transmitted to the brain via ascending interneurons. Functional analyses reveal a mechanical transmission of forced head rotations and of foreleg vibrations to the attachment site of the pCO. In summed action potential recordings a physiological correlate was found to stimuli with parameters of leg vibrations, rather than to those of head rotation. The data represent a first physiological study of a putative predecessor organ of an insect ear.  相似文献   
999.
The anatomy and functionality of the stomatogastric nervous system (SNS) of third-instar larvae of Calliphora vicina was characterised. As in other insects, the Calliphora SNS consists of several peripheral ganglia involved in foregut movement regulation. The frontal ganglion gives rise to the frontal nerve and is connected to the brain via the frontal connectives and antennal nerves (ANs). The recurrent nerve connects the frontal- to the hypocerebral ganglion from which the proventricular nerve runs to the proventricular ganglion. Foregut movements include rhythmic contractions of the cibarial dilator muscles (CDM), wavelike movements of crop and oesophagus and contractions of the proventriculus. Transections of SNS nerves indicate mostly myogenic crop and oesophagus movements and suggest modulatory function of the associated nerves. Neural activity in the ANs, correlating with postsynaptic potentials on the CDM, demonstrates a motor pathway from the brain to CDM. Crop volume is monitored by putative stretch receptors. The respective sensory pathway includes the recurrent nerve and the proventricular nerve. The dorsal organs (DOs) are directly connected to the SNS. Mechanical stimulation of the DOs evokes sensory activity in the AN. This suggests the DOs can provide sensory input for temporal coordination of feeding behaviour.  相似文献   
1000.
The aim of this study was to investigate the effects of the apolipoprotein A5 (APOA5) 1131T>C gene variant on vitamin E status and lipid profile. The gene variant was determined in 297 healthy nonsmoking men aged 20-75 years and recruited in the VITAGE Project. Effects of the genotype on vitamin E in plasma, LDL, and buccal mucosa cells (BMC) as well as on cholesterol and triglyceride (TG) concentrations in plasma and apolipoprotein A-I (apoA-I), apoB, apoE, apoC-III, and plasma fatty acids were determined. Plasma malondialdehyde concentrations as a marker of in vivo lipid peroxidation were determined. C allele carriers showed significantly higher TG, VLDL, and LDL in plasma, higher cholesterol in VLDL and intermediate density lipoprotein, and higher plasma fatty acids. Plasma alpha-tocopherol (but not gamma-tocopherol, LDL alpha- and gamma-tocopherol, or BMC total vitamin E) was increased significantly in C allele carriers compared with homozygote T allele carriers (P = 0.02), but not after adjustment for cholesterol or TG. Plasma malondialdehyde concentrations did not differ between genotypes. In conclusion, higher plasma lipids in the TC+CC genotype are efficiently protected against lipid peroxidation by higher alpha-tocopherol concentrations. Lipid-standardized vitamin E should be used to reliably assess vitamin E status in genetic association studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号